A Frame-Dependent Fuzzy Compensation Method for Speech Recognition over Time-Varying Telephone Channels∗
نویسندگان
چکیده
Speech signals transmitted over telephone network often suffer from interference due to ambient noise and channel distortion. In this paper, a novel frame-dependent fuzzy channel compensation (FD-FCC) method employing two-stage bias subtraction is proposed to minimize the channel effect. First, through maximum likelihood (ML) estimation over the set of all word models, we choose the word model which is best matched with the input utterance. Then, based upon this word model, a set of mixture biases can be derived by averaging the cepstral differences between the input utterance and the chosen model. In the second stage, instead of using a single bias, a frame-dependent bias is calculated for each input frame to equalize the channel variations in the input utterance. This frame-dependent bias is achieved by the convex combination of those mixture biases which are weighted by a fuzzy membership function. Experimental results show that the channel effect can be effectively canceled even though the additive background noise is involved in a telephone speech recognition system. key words: hidden Markov model (HMM), maximum likelihood (ML) estimation, frame-dependent channel bias, fuzzy membership function
منابع مشابه
Sources of degradation of speech recognition in the telephone network
In this paper we compare speech recognition accuracy for highquality speech recorded under controlled conditions with speech as it appears over long-distance telephone lines. In addition to comparing recognition accuracy, we use telephone-channel simulation to identify the sources of degradation of speech over telephone lines that have the greatest impact on speech recognition accuracy. We firs...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملRobust Distant Speech Recognition by Combining Multiple Microphone-Array Processing with Position-Dependent CMN
We propose robust distant speech recognition by combining multiple microphone-array processing with position-dependent cepstral mean normalization (CMN). In the recognition stage, the system estimates the speaker position and adopts compensation parameters estimated a priori corresponding to the estimated position. Then the system applies CMN to the speech (i.e., positiondependent CMN) and perf...
متن کاملRobust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM
This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کامل